

Motorola's Next PowerPC[™] Microarchitecture with AltiVec[™] Technology

Naras Iyengar

Senior Member of Technical Staff Somerset Design Center Motorola, Inc.

PowerPC

Goals of the New Microarchitecture

The Microarchitecture

PowerPC

First G4 PowerPC microarchitecture disclosure at MPF 1998

- MPC7400, first product based on this microarchitecture, announced August 1999
- Additional products based on original microarchitecture to be announced at a later date

Second G4 PowerPC microarchitecture disclosure at MPF 1999

- Features supported in this new microarchitecture detailed today
- Feature set of first product based on new microarchitecture to be disclosed next year

Goals of the New Microarchitecture

The Microarchitecture

PowerPC

Goals of New Microarchitecture

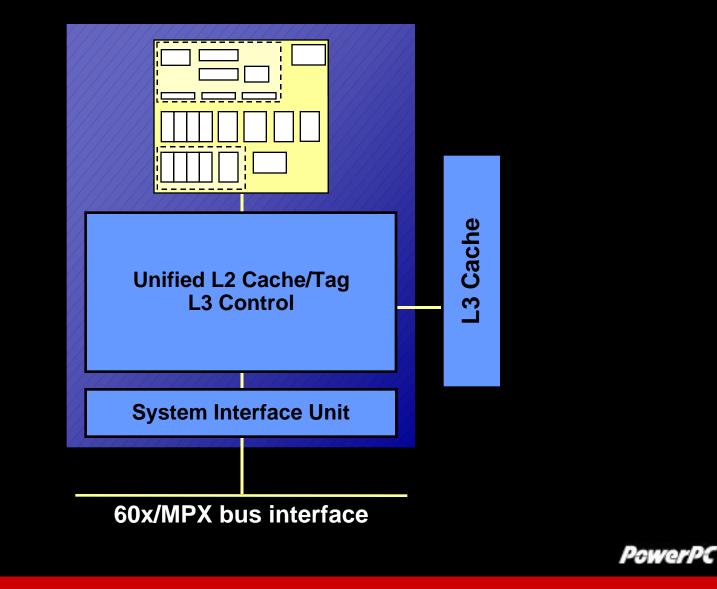
Build on capabilities of first G4 PowerPC microarchitecture

- Expand the pipeline structures to support higher frequencies while maintaining/improving instructions per cycle (IPC)
- Increase performance of execution units
- Increase performance of memory sub-system
- Establish modular design concept
- Introduce additional features
- Provide full compatibility with MPC7400

Goals of the New Microarchitecture

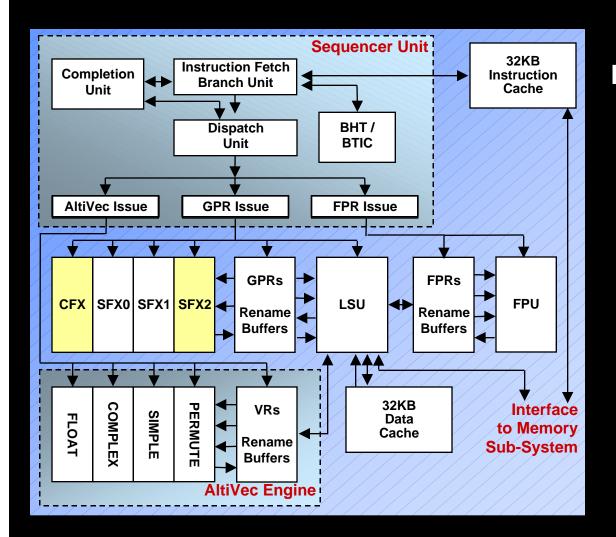
The Microarchitecture

PowerPC



Microarchitecture Overview

- New seven-stage pipeline
- Increased the instructions per cycle from 3 to 4
 - Two additional execution units and enhanced AltiVec Engine
- Faster /wider memory subsystem
 - High-bandwidth, 256-bit internal memory sub-system between L1 and L2 caches
 - Provides on-chip L2 cache with parity
 - Supports large backside L3 cache with 64-bit/128-bit datapath
 - Provides multiple system bus options
 - Supports embedded applications through additional features
 - Maintains full MPC7400 compatibility



Core Block Diagram

Eleven execution units:

- Three simple fixed-point units
- Complex fixed-point unit
- Floating-point unit
- Branch execution unit
- Load/store unit
- Four AltiVec units
 - Simple
 - Complex
 - Float
 - Permute

PowerPC

Digital DNA From Motorola Processor Pipeline Comparison

MPC 7400 Pipeline

Fetch	Dispatch	Execute	Write Back
-------	----------	---------	------------

New Pipeline

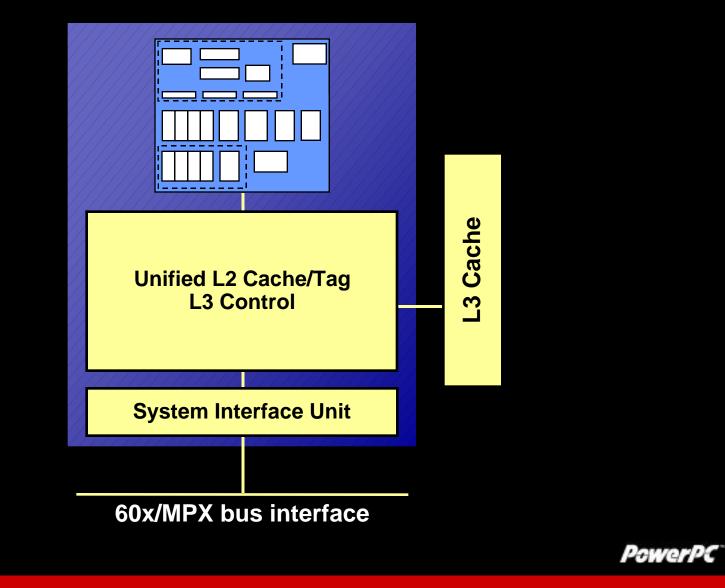
PowerPC

Four instructions per cycle

• 3 dispatch + 1 branch

Additional resources to improve IPC

- Additional execution units
- 12-entry instruction buffer
- 16 completion buffers
- 16 GPR, 16 FPR, and 16 AltiVec rename registers
- 2048-entry Branch History Table (BHT)
- 128-entry, four-way set associative Branch Target Instruction Cache (BTIC)



Higher Performance AltiVec Implementation

- Now able to dispatch two AltiVec instructions to any of the four AltiVec execution units per clock cycle
- Full 128-bit implementation of AltiVec instruction set
- Four fully-pipelined execution units
 - Simple, Complex, Floating-Point, Permute
- Separate 32-entry, 128-bit wide Vector register file

Memory Subsystem: L1 Cache

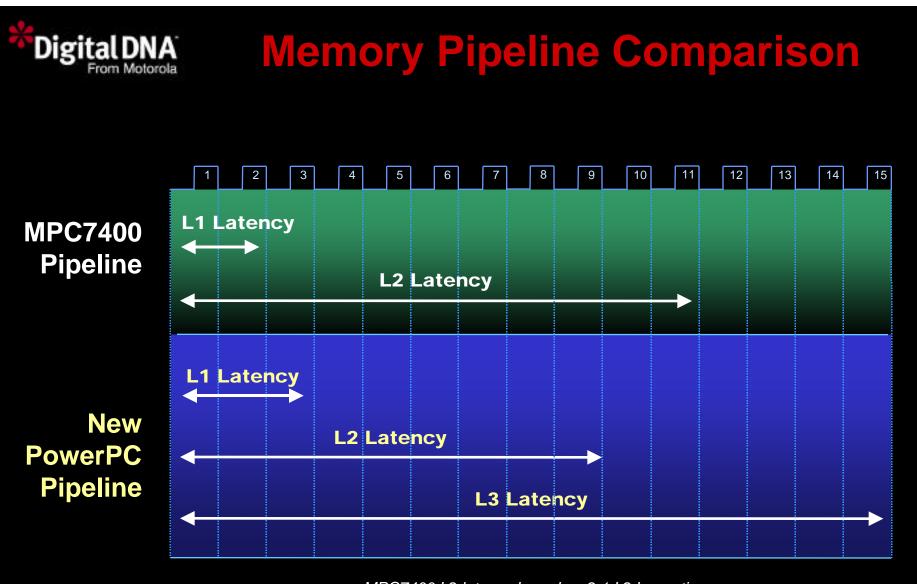
L1 non-blocking caches

- 32KB eight-way set associative instruction cache
- 32KB eight-way set associative data cache
- Data integrity protected by on-chip parity
 - Byte parity on data cache
 - Word parity on instruction cache
- Cache locking supported for any combination of ways in both instruction and data caches
- 256-bit datapath between L1 and L2 caches

Memory Subsystem: L2 Cache

On-chip L2 cache

- Unified, non-blocking L2 cache
- 256KB, eight-way set associative L2 cache
- Operates in copy back mode, supports cache coherency
- Six-cycle penalty, single-cycle throughput
- Loads and stores performed for an entire cache line in one cycle using 256-bit internal data bus
- Data integrity protected by on-chip byte parity



Memory Subsystem: L3 Cache

L3 cache interface

- On-chip tags to support up to 2MB of off-chip cache
- Critical double-word forwarding to reduce latency
- Support for both 128-bit and 64-bit data transfers
- Data and address parity supported for L3 cache
- Support for high performance MSUG2 DDR SRAM and late-write SRAMs
- Support for cost-sensitive PB2 SRAM and PC-DDR SRAMs
- L3 tag disable option
 - Allows L3 cache to be direct-mapped memory

MPC7400 L2 latency based on 2:1 L2 bus ratio New PowerPC L3 latency based on 2:1 L3 bus ratio

PowerPC

Other Memory Features

Software tablewalk, in addition to hardware tablewalk

- Supports 36-bit memory addressing
 - Allows 64 GB of physically-addressable memory
- Extensive support for multiprocessing environment
 - Supports multiple bus protocols
 - Both 128-bit and 64-bit data transfer supported for MPX bus architecture
 - Support for legacy 60x bus architecture

Process Technology and Other Features

Technology:

- Designed to Motorola 0.13µ process technology
- Internal voltage: 1.5V
- Supports 1.8V and 2.5V I/O

Design features:

- Operating frequency 700+ MHz
- Support for extensive system and L3 bus ratios
- Power consumption: less than 10W (typical)
- Number of transistors: over 33 million

Motorola's second G4 PowerPC microarchitecture:

- Expanded the pipeline from 4 to 7 stages without loss of IPC
- Increased instruction dispatch
- Moved L2 cache on die and implemented 256-bit datapath to L1
- Added support for high speed backside L3 cache supporting multiple configurations
- Added 36-bit physical addressing
- Added features to support additional applications

